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Stereoselective synthesis of (—)-microcarpalide
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Abstract—A stereoselective approach for the synthesis of the bio-active decanolactone (—)-microcarpalide was achieved from chiral
pool tartaric acid. The synthesis of pivotal intermediates en route to the decanolactone was achieved from a-benzyloxy aldehydes
derived from L- and D-tartaric acid.

© 2006 Elsevier Ltd. All rights reserved.

(—)-Microcarpalide (1), is a 10-membered lactone of
polyketide origin isolated by Hemscheidt’s group from
the fermentation broths of an unidentified endophytic

fungi.! Microcarpalide is similar in structure to other o :
fungal decanolides such as herbarumin I (2), herbarumin OH ~~ O
IT (3) and lethaloxin (4) and is found to be weakly cyto- Microcarpalide 1 Herbarumin | 2

toxic to mammalian cells and acts as a microfilament HO
disrupting agent (Fig. 1). Since the isolation of micro- OG-~ o
carpalide, a number of syntheses have appeared in the m HO” ™ O o
past few years.” Most of the approaches towards the HO™ ™ OH 5
synthesis of microcarpalide were centred either on ring ~~ ©
closing metathesis (RCM) of a suitably protected diene Herbarumin 1l 3

ester of type 6 or on Yamaguchi lactonization of a suit-
able linear hydroxy acid as the key step.

Lethaloxin 4

Figure 1. Bioactive fungal decanolactones.
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Scheme 1. Retrosynthesis of (—)-microcarpalide 1.
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Continuing efforts from our laboratory on enantioselec-
tive synthesis of natural products from chiral pool tar-
taric acid has resulted in the synthesis of a number of
bio-active pheromones and styryl lactones.’> A pivotal
step in our approach is the enantioselective synthesis
of a-benzyloxy aldehydes, which serve as excellent syn-
thons for further elaboration. We envisaged the synthe-
sis of (—)-microcarpalide 1 through the key precursor 5,
which in turn can be derived from the RCM reaction of
diene ester 6. Assembly of the alcohol and acid compo-
nents 7 and 8 of the diene ester was envisaged from alde-
hydes 9 and 10, which can be derived from D- and L-
tartaric acid, respectively (Scheme 1).
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The synthetic sequence for alcohol component 7 com-
menced with the addition of n-hexylmagnesium bromide
to bis-Weinreb amide 11* derived from p-(—)-tartaric
acid affording diketone 12 in a 95% yield. Under condi-
tions optimized by us for the reduction of these types of
diketones,’ the reduction of 12 with L-Selectride fur-
nished a single diastereomer of 1,4-diol 13 in a 92%
yield. Subsequent protection of diol 13 under standard
conditions afforded dibenzyl ether 14. Facile deprotec-
tion of the acetonide® in 14 was accomplished with Fe-
Cl3:6H,0 to yield diol 15 in a 87% yield. Treatment of
diol 15 with Pb(OAc)4 furnished aldehyde 9, which on
subsequent allylation under Keck allylation conditions’
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Scheme 2. Synthesis of homoallylic alcohol 7.
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Scheme 3. Synthesis of 6-heptenoic acid fragment 8.
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Scheme 4. Synthesis of (—)-microcarpalide 1.

with allyltributyltin furnished the required threo alcohol
7 as the sole diastereomer ([a]p +17.1 (¢ 1.7, CHCIs),
lit.% [a]p +17.4 (¢ 1.5, CHCl)) (Scheme 2).

Synthesis of the olefinic acid fragment 8 was initiated by
the addition of 3-butenylmagnesium bromide to bis-
Weinreb amide 16* derived from L-(+)-tartaric acid to
yield diketone 17 in an 87% yield. L-Selectride reduction
of diketone 17 afforded diol 18 as a single diastereomer
in a 98% yield. Alcohol 18 was converted to dibenzyl-
ether 19, which on ozonolysis followed by reduction
with NaBH, afforded diol 20 in an 84% yield. The pri-
mary alcohol groups in 20 were protected as the corre-
sponding fert-butyldiphenylsilyl (TBDPS) ethers. Next,
a facile deprotection of the acetonide with FeClz-6H,0°
furnished diol 21. Treatment of diol 21 with Pb(OAc)4
resulted in aldehyde 10, which on reaction with vinyl
magnesium bromide in the presence of MgBr, OEt; in
dichloromethane produced threo alcohol 22 as a single
diastereomer.® Protection of the secondary alcohol
group in 22 as benzyl ether and deprotection of the silyl
ether afforded 23 in a high yield. Oxidation of the pri-
mary alcohol with IBX gave the aldehyde, which on fur-
ther oxidation with NaClO, yielded acid 8 in a 96%
yield. The spectral data and the physical properties
([elp +16.6 (¢ 0.9, CHCls), lit.>" [a]p +16.8 (¢ 0.7,
CHCI3)) of acid 8 were in complete agreement with
those reported in the literature (Scheme 3).

After successfully obtaining the alcohol and acid frag-
ments, the synthesis of (—)-microcarpalide via ester 6,
employing the procedure reported by Davoli et al.>®
was undertaken. Accordingy, DCC/DMAP mediated
coupling of alcohol 7 with acid 8 generated ester 6
[alp +2.0 (¢ 2.0, CHCl;, lit.> [a]p +1.9 (¢ 1.4, CHCl3),
which on ring closing metathesis (RCM) with Grubbs
Ist generation catalyst in dichloromethane produced 5.
Interestingly, RCM reaction using Grubbs 2nd genera-
tion catalyst produced an E/Z mixture of decanolide 5
in a 33% yield with 64% of unreacted starting com-

pound. Since the conversion of 5 to (—)-microcarpalide
has already been reported in the literature, the present
sequence constitutes a formal total synthesis (Scheme 4).
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